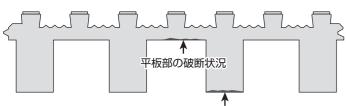
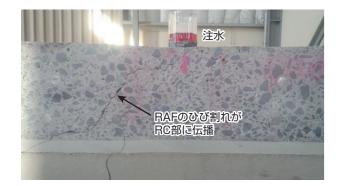
はく落防止性能の確認(付着強度試験)

平板部:付着強度3.19>1.5N/mm²(基準値)



●下面リブ部:付着強度2.74>1.5N/mm²(基準値)



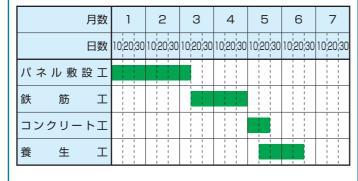
下面リブの破断状況

注水試験(輪荷重走行試験後の試験体)

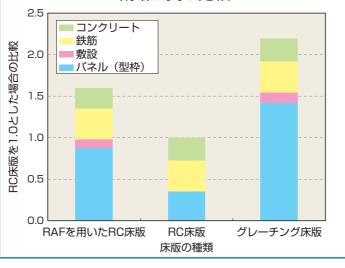
載荷による強制的なひび割れ進展および注水

RAF下面の透水状況

概略工期の比較(床版面積2,600m²当り)


RAFを用いたRC床版

月数	1	2	3	4	5	6	7
日数	10,20,30	10,20,30	10,20,30	10 20 30	10,20,30	10,20,30	10 20 30
RAF敷設工							
鉄 筋 工							
コンクリートエ							
養 生 工							


●RC床版

●グレーチング床版

概略工費の比較

連絡先: 〒114-0023 東京都北区滝野川6-3-1 AKビル8F TEL:03-5394-1360 FAX:03-5394-8232 http://www.kyoritsu-enji.co.jp/

リブ付きアーチフォーム(RAF) を用いたRC床版

KT-160048-A

■RAFとは?■

- ◆RAFはRC床版用の押出し成形埋設型枠
- ◆埋設型枠が床版の自重・施工時荷重を支持
- ◆材質はポリプロピレン繊維補強セメント (圧縮強度55N/mm²以上)

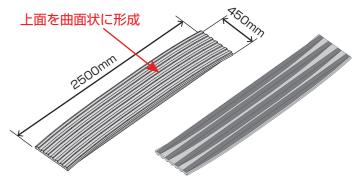
■アピールポイント■

- ◆床版用の足場・支保工・合板型枠を省略
- ◆合板型枠工(型枠大工)が不要
- ◆現場作業の安全性確保・工期短縮が可能
- ◆輪荷重走行試験で100年の耐久性を確認

RAFの施工手順

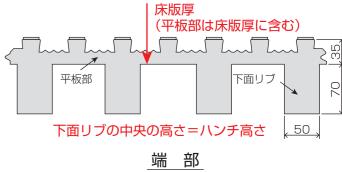
RAFの敷設

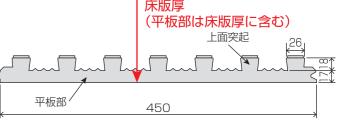
鉄筋の配筋


添接板を50mm控える

- ◆塩害・中性化に対する抵抗性が高い
- ◆RC床版の剥落を防止
- ◆合板型枠などの産業廃棄物の削減

RAFの敷設状況

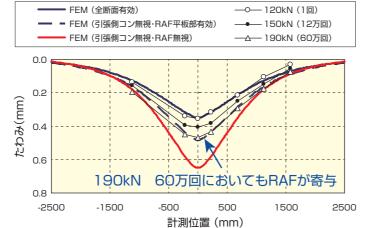

RAFの形状



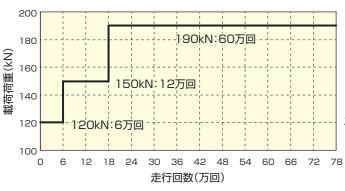
1枚当りの重量:約100Kg

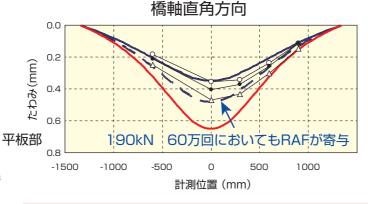
RAFの断面形状

中央部


EKYORITSU 協立エンジ株式会社・川田建設㈱・川田工業㈱

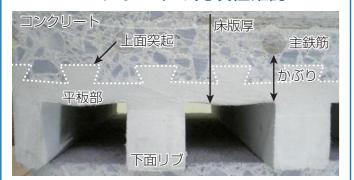
輪荷重走行試験による疲労耐久性の確認


輪荷重走行試験状況



弾性たわみの変化 橋軸方向

載荷荷重および走行回数

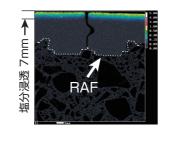


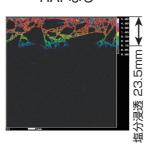
等価損傷

走行回数	載荷荷重 P (衝撃を考慮)	Neq-s
回	kN	
60,000	120.0	0.00000068
120,000	150.0	0.00002345
600,000	190.0	0.00239580
		0.00241993

実橋が1年で受ける等価繰返し回数 Neq-a= 0.00001399 Neq-s/Neq-a= 173年

コンクリートの充填性確認

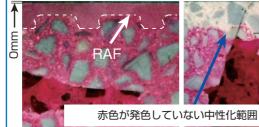

RAFの上面突起間にコンクリートが行き渡る (輪荷重走行試験後の切断写真)

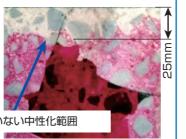

RAFが床版断面として有効に寄与

塩分浸透深さ試験(6箇月間)

RAFあり

RAFなし



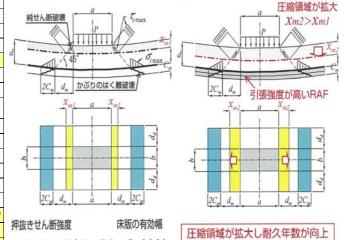


促進中性化試験結果

RAFあり

RAFなし

RC床版との耐久年数の比較とコンクリート強度向上の提案

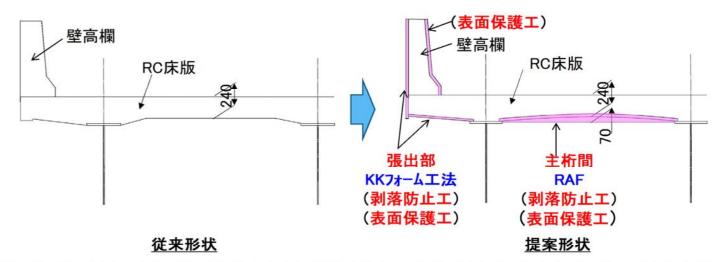

RC床版

耐久年数の試算

床版の種類	_		RC床版	RAFを用いたRC床版	
床版厚(RAF厚含む)	d	mm	190	190	
RAF厚	t	11	_	35.3	
上側主鉄筋配置	- 11		D19×250	D19×250	
下側主鉄筋配置	- 11		D19×125	D19×125	
コンクリートの設計基準強度	$\sigma_{\it ck}$	N/mm^2	24	24	30
コンクリートの最大せん断応力度	T smax	11	4.6	4.6	5.3
コンクリートの最大引張応力度	σ_{tmax}	N/mm^2	2.2	2.2	2.6
主鉄筋断面の圧縮側コンクリート 表面から中立軸までの距離	Xm	mm	56	75	76
主鉄筋のかぶり	C_m	mm	39.5	44.8	
配力鉄筋方向の載荷板の辺長	b	11	120	120	
配力鉄筋の有効高さ	d_d	11	133	128	
疲労に対する床版の有効幅	В 11		386	376	
押抜きせん断強度	P_{sx}	kN	267	334	390
P/P _{sx} (P=100kN)		_	0.375	0.299	0.256
繰返し回数	Ν		5.87×10 ⁷	1.03×10 ⁹	7.28×10 ⁹
乾燥状態での耐久年数	ź	Į.	82	1,429	10,117
湿潤状態での耐久年数	J	I	1	14	101
國國	-		上側主鉄筋 D19億250	上側主鉄筋D19億250 アルウェン・ファーマーン・ファース RAFの平板部	

湿潤状態での耐久年数は乾燥状態の 1/100

破壊モデルの比較 • RAFを用いたRC床版


コンクリート強度向上の提案⇒ *σ ck*=30N/mm²

・床版の耐久年数が大きく向上

 $P_{xx} = 2\tau_{smax}X_mB + 2\sigma_{tmax}C_mB \qquad B = b + 2d_d$

・コンクリートの密実性を高め土砂化を抑制

RAF・KKフォーム適用の提案

		主 <mark>析間にRAFを適用し剥落防止工と</mark> して交差道路の安全性を向上、 表面保護工として塩害・中性化を防止。		
		張出部下面・壁高欄にRAFと同材料で構成する「KKフォーム工法(ネティス登録済み)」を適用し 剥落防止工として交差道路の安全性を向上、表面保護工として塩害・中性化を防止。		
ポ	長寿命化	輪荷重に対する床版の耐久性の確保。		
イン	環境保全	木製型枠不要による産廃の削減、CO2発生の低減。		
	品質向上	工場製品による品質向上。		
	現場工程	型枠支保工・木製型枠の設置解体の省略による工期短縮、現場省力化。		
	施工安全性	型枠支保工省略による高所作業の低減。		